D. Altdorff, L. Galagedara, J. Abedin and A. Unc, Soil Systems 2019 Vol. 3 Issue 3, https://doi.org/10.3390/soilsystems3030053
Boreal agriculture struggles with soils of lower agronomic value, most of which are sandy with a low water holding capacity (WHC) and prone to nutrient leaching. Biochar amendments are associated with positive effects on soil hydraulic properties and enhanced nutrient retention. However, these effects are strongly related to feedstock type and pyrolysis parameters and depend on biochar application rates and soil types. While biochar could increase the productivity of boreal agriculture by improving water and nutrient use efficiency, little is known about its effects on hydraulic processes in podzol. In this study, we investigated the effects of biochar rates (10, 20, 40, 80 Mg carbon ha−1) and maturity on soil hydrology for an agriculturally used Podzol in Labrador, Canada. The in-situ soil water content (SWC) and weather data over an entire growing season were analysed. Hydrus 1D simulations were used to estimate changes in water fluxes. SWC showed clear differentiation among storage parameters (i.e., initial, peak and final SWC) and kinetic parameters (i.e., rate of SWC change). Storage parameters and soil wetting and drying rates were significantly affected by biochar rates and its maturity. The magnitude of the changes in SWC after either wetting or drying events was statistically not affected by the biochar rate. This confirms that biochar mostly affected the WHC. Nevertheless, reductions in cumulative lower boundary fluxes were directly related to biochar incorporation rates. Overall, biochar had positive effects on hydrological properties. The biochar rate of 40 Mg C ha−1 was the most beneficial to agriculturally relevant hydraulic conditions for the tested Podzol.